A zero-indexed array A consisting of N integers is given. The dominatorof array A is the value that occurs in more than half of the elements of A.
For example, consider array A such that
A[0] = 3 A[1] = 4 A[2] = 3A[3] = 2 A[4] = 3 A[5] = -1A[6] = 3 A[7] = 3
The dominator of A is 3 because it occurs in 5 out of 8 elements of A (namely in those with indices 0, 2, 4, 6 and 7) and 5 is more than a half of 8.
Write a function
int solution(const vector<int> &A);
that, given a zero-indexed array A consisting of N integers, returns index of any element of array A in which the dominator of A occurs. The function should return −1 if array A does not have a dominator.
Assume that:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
For example, given array A such that
A[0] = 3 A[1] = 4 A[2] = 3A[3] = 2 A[4] = 3 A[5] = -1A[6] = 3 A[7] = 3
the function may return 0, 2, 4, 6 or 7, as explained above.
Complexity:
- expected worst-case time complexity is O(N);
- expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments).
就是找一个数组的众数(出现次数大于N/2)。
主要利用这样一个特性:每次删掉不相同的两个元素,因为删掉两个不同的元素之后,数组里剩下的元素的众数还是原数组的众数。(The leader in the new sequence occurs more than n/2 − 1 = (n−2)/2 times )
有了上面的特性那程序就很好实现了:
// you can also use includes, for example:// #include#include int solution(const vector &A) { // write your code in C++98 stack sstack; for(int i=0;i A.size()/2) { return candidate; }else { return -1; } }}
其实用栈有点浪费空间,因为栈里的元素肯定是一样的,所以只需要两个变量分别记录下栈的大小以及栈内元素的值就好。
需要注意的是最后需要检查一下栈顶的那个元素到底是不是众数。(因为比方说数组是1,2,3. 最后栈里留下的3显然不是众数)。
Leader这个lesson还有一个题是EquiLeader:
A non-empty zero-indexed array A consisting of N integers is given.
The leader of this array is the value that occurs in more than half of the elements of A.
An equi_leader is an index S such that 0 ≤ S < N − 1 and two sequences A[0], A[1], ..., A[S] and A[S + 1], A[S + 2], ..., A[N − 1] have leaders of the same value.
For example, given array A such that:
A[0] = 4 A[1] = 3 A[2] = 4 A[3] = 4 A[4] = 4 A[5] = 2
we can find two equi_leaders:
- 0, because sequences: (4) and (3, 4, 4, 4, 2) have the same leader, whose value is 4.
- 2, because sequences: (4, 3, 4) and (4, 4, 2) have the same leader, whose value is 4.
The goal is to count the number of equi_leaders. Write a function:
int solution(vector<int> &A);
that, given a non-empty zero-indexed array A consisting of N integers, returns the number of equi_leaders.
For example, given:
A[0] = 4 A[1] = 3 A[2] = 4 A[3] = 4 A[4] = 4 A[5] = 2
the function should return 2, as explained above.
Assume that:
- N is an integer within the range [1..100,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].
Complexity:
- expected worst-case time complexity is O(N);
- expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
还是个找众数的题,只是这一次需要完成的目标是:找出一个数组有多少个分割点,这个分割点使得左右两边的子数组的众数相同。
显然左右两边的子数组如果他们有相同的众数的话,那这个众数肯定是原数组的众数。
所以可以先找出原来的众数,然后重新遍历,判断当前的位置是不是一个有效的分割点就好。
// you can also use includes, for example:// #include#include int solution(vector &A) { // write your code in C++98 stack sstack; int count = 0; int res = 0; for(int i=0;i A.size()/2) { int leftCount = 0; for(int i=0;i (i+1)/2 && (count-leftCount)>(A.size()-i-1)/2) { res++; } } return res; } return 0; }}